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ABSTRACT 

The compressive strength of composite laminates is 

greatly reduced by the local instabilities initiated by in- 

terlaminar defects.  In the present study, the reduction in 

compressive strength of a (0/±452/0)s AS/3501-6 graphite-epoxy 

laminate containing implanted interlaminar defects is ex- 

amined.  The experimental study consisted of the four-point 

static loading of sandwich beams with graphite-epoxy face 

sheets having through-width delaminations of 0.5 in.(12.7mm), 

0.75 in.(19.1mm), 1.0 in.(25.4mm) and 1.5 in.(38.1mm) in 

length.  Failure consisted of the unstable interlaminar 

crack, growth within the compressive face of the sandwich. 

Reduction in flexure strength was found to be directly pro- 

portional to debond length and varied from 41 to 87 percent 

of the pristine value.  Combined stability and finite ele- 

ment analysis showed that the initial out-of-plane deforma- 

tions of the sublaminate induced by residual stresses de- 

creases axial stiffness of the buckled sublaminate and re- 

sults in both Mode I and Mode II propagation at the inter- 

laminar crack tip.  An approximate strain energy release 

rate formulation for Mode I fracture is correlated with the 

experimental data, where a value of the strain energy 

li 
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release rate G _ = 1.4 lb/in (250N/m) yields accurate 

predictions of the compressive strength for all defect 

geometries considered. 



INTRODUCTION 

The local instability of composite laminates in the 

vicinity of interlaminar defects may strongly influence the 

compressive strength of the laminate.  In an attempt to quan- 

tify this phenomenon, composite sandwich beams with implanted 

interlaminar defects of PTFE film were tested in four point 

flexural loading.  Experimental results showed substantial 

reductions in strength with increasing defect length. 

Failure occurred on the compressive face of the 

sandwich beam for all specimens including the zero defect 

geometry.  The failure mechanism consisted of fast inter- 

laminar fracture initiating at the interlaminar crack tip 

[1].  Reduction in the flexure strength varied from 41 to 

87 percent of the zero defect value for the debond lengths 

investigated.  The drastic reduction in strength is attri- 

buted to the decrease in stiffness of the buckled sublami- 

nate.  Consequently, additional load is transferred through 

shear at the edge of the defect to the sublaminate which 

remains bonded to the honeycomb core and is thus restrained 

from buckling. 

The complex state of stress at the crack-tip 



resulting from the reduction is stiffness, as well as, the 

curvature of the buckled sublaminate arising from out-of- 

plane deformations has been investigated by Gillespie and 

Pipes [2] and Whitcomb [3] using linear and non-linear 

finite element techniques, respectively.  The interlaminar 

normal and shear stress components exhibit singular behavior 

at the crack tip suggesting the total strain energy release 

rate has contributions from both Mode I and Mode II crack 

extension modes.  Ashizawa [1] and Whitcomb [3], however, 

have shown that delamination growth may be dominated by Mode 

I fracture. 

in the present analysis of the sandwich beam the 

slight variation of compressive stress (approximately 4 per- 

cent) across the laminate thickness and the sandwich beam 

curvature are neglected.  The debond region is modeled as 

two beams in parallel, one straight and one which exhibits 

lateral deformation and thus reduced axial stiffness.  Com- 

patability of axial displacements at the end of the beam 

model enables the total axial load to be divided between the 

two beams in direct proportion to their apparent stiffnesses, 

initial out-of-plane deformation of the sublaminate above 

the defect due to the debond thickness* and thermal residual 

stresses is included in the buckling analysis and 

(*The debond was produced by implanting a 0.002 in (0.05mm) 

PTFE insert.) 



significantly reduces the axial stiffness of the deformed 

sublaminate.  Employing this model to predict the axial load 

at failure in the deformed laminate results in loads substan- 

tially less than the classical Euler's buckling load for the 

majority of delaminations investigated [1].  Consequently, 

the post-buckling analyses of Chai [4] and Whitcomb [5] may 

not be applicable for delaminations of sublaminates with 

initial deflections. 

The strain-energy release rate for a cantilever beam 

loaded by a moment is employed to correlate experimental 

failure loads with analytic predictions.  The eccentricity 

in the load path where the axial load is transferred through 

interlaminar stresses in the vicinity of the crack tip 

results in a crack closing moment whose magnitude is direct- 

ly proportional to the reduction in axial stiffness of the 

buckled sublaminate.  Linear finite-element stress analysis 

of the crack tip region is employed by replacing the non- 

linearity of the buckled sublaminate with an equivalent set 

of loads determined from the beam model.  Finite element re- 

sults reveal that the interlaminar state of stress is a 

boundary layer phenomenon and thus independent of debond 

length.  The boundary layer of interlaminar stresses is anal- 

ogous to that described in the free-edge problem [6] and is 

equal to three laminate thicknesses for the laminate geome- 

tries considered.  The closing moment results from the 



interlaminar normal stress distribution at the crack tip and 

the magnitude is evaluated through numerical integration 

techniques or through equilibrium considerations of an ap- 

propriate free-body diagram of the delamination region. 

Consequently, the total moment in the strain energy release 

rate formulation is the summation of the opening and closing 

moments acting at the crack tip [5].  A value of GIC = 

1.4 lb/in (250 N/m) yields accurate predictions of the com- 

pressive strength for the delamination geometries considered, 



EXPERIMENTAL EFFORT 

The experimental effort consisted of the four-point 

static loading of sandwich beams with [0/±45„/0]  AS/3501-6 

graphite-epoxy face sheets (Figure 1).  Implanted through- 

width delaminations of 0.5 in. (12.7mm), 0.75 in.(19.1mm), 

1.0 in.(25.4mm) and 1.5 in.(38.1mm) in length were placed 

at the midsurface between the zero degree plies and co-cured 

with the laminate.  The implanted defects consisted of two 

rectangular layers of 0.001 in.  (0.0254mm) PTFE film and 

represents the minimum initial out-of-plane deformation of 

the sublaminate as shown schematically in Figure 1. 

Experimental results presented in Table 1 show the 

equivalent flexure stress and strain in the compressive face 

sheet at failure.  Instrumentation consisted of strain gages 

centered directly over the implanted defects on both the 

tensile and compressive faces of the sandwich beam.  The 

strain on the compressive face consisted of contributions 

from the curvature of the buckled sublaminate, as well as, 

the axial loading.  Consequently, any appreciable buckling 

would reduce the compressive strain (e ) relative to the 

strain on the tensile face (e ).  The characteristic strain 

responses (e vs e ) are illustrated in Figure 2 for the 
J.       c 



(All dimensions 
in inches) 

Aluminum Honeycomb Core 

mplanted 
Defect 

Figure   1.      Test  Specimen 
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Figure 2.  Strain Response for the 0.75 in. (19.1 mm) 
Sandwich Beam 
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0.75 in.  (19.1mm) defect which exhibits a transition from 

the linear to nonlinear response prior to failure. 

Table 1 

Experimental Data* 

Debond length 

inches (mm) 

0 
0.50**(12.7) 
0.75  (19.1) 
1.00  (25.4) 
1.50  (38.1) 

Failure Stress 

Ksi (MPa) 

102.0 
58.8 
55.6 
25.9 
13.4 

(703) 
(411) 
(383) 
(179) 
(92) 

*  Minimum of four tests/geometry 
** Two tests only 

Compressive 
Failure Strain 

ue  

14500 
7250 
6625 
3000 
1300 

In Figure 3, the reduction in strength with 

increasing debond length illustrates the strong dependence 

of compressive strength on interlaminar defect geometry. 

The characteristic failure mode for sandwich beams with 

implanted defects was fast interlaminar fracture at the mid- 

surface of the compressive face sheet as shown in Figure 4. 

Crack arrestment occurred at the load introduction points 

of the fixture. 



1.00 

0.75 

0.50 - 

0.25 

0.00 

Xj   = 102 ksi (703MPa) 

T = Range of Values 

0.25 
(6.4) 

Debond Length (inches,(mm) 

Figure 3.  Reduction in Strength as a Function of Debond 
Length 



10 

—1 

■üWK<wwd* 

>:&$■■ K?;BS*!*MiW' 

g?Sjll§nHBflH 

WKBBBM 

o 

CD 

H 
•H 

CÖ 

U 
■H 
-P 
cn 

•H 
u 
Q) 
+> 
ü 
(0 

(0 
Xi 
U 

CD 
U 

-rH 



STRESS ANALYSIS 

Investigation of the complex state of stress in the 

vicinity of the crack tip due to the reduction in axial 

stiffness of the buckled sublaminate necessitated finite 

element analysis.  In general, a geometrically non-linear 

finite element stress analysis would be required [3].  In 

the present study, however, linear finite element stress 

analysis of the crack tip region is employed by replacing 

the non-linearity of the buckled sublaminate with an equiv- 

alent set of loads determined from the beam model.  The fi- 

nite element model is shown in Figure 5 where the buckled 

sublaminate is replaced by equivalent forces.  Mesh refine- 

ment in the vicinity of the defect is required due to the 

presence of large stress gradients.  Symmetry enabled one- 

half of the debond region to be modelled.  The total length 

of the model was 2 in. (50.8mm) or one-half the distance 

between the beam load introduction points.  The length of 

the step was one-half the debond size.  The boundary condi- 

tions are indicated clearly in Figure 5. 

The lamina properties for unidirectional AS/3501-6 

graphite-epoxy are presented in Table II.  The effective 

properties for the (0/±452/0)s laminate employed in the 

11 
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Table II 

Laminar Properties:  AS/3501-6 

E±  Msi (GPa) 19.9  (137.2) 

E2 Msi (GPa) 1.4    (9.7) 

E3 Msi (GPa) 

V12 

V13 = V12 

V23 

G12 Msi 

G13 = G23 = G12 Msi (GPa) 

1.4 (9.7) 

0.21 

0.21 

0.3 

0.6 (4.1) 

0.6 (4.1) 

Table III 

Effective Laminate Properties:  [0/±452/0]| 

E  Msi (GPa) 8.2  (56.5) 

Ex Msi (GPa) 3.5  (24.1) 

E Msi (GPa) 1.4   (9.7) 
z 

v 0.74 
yx 

v yz 

v xz 

0.067 

0.215 

G  Msi (GPa) 3.7  (25.5) 
xy 

G   = G   = G   Msi (GPa)      3.7  (25.5) 
xz   yz   xy 

0° plies are parallel to beam axis 
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finite element model are given in Table III. 

The loadings considered are defined in Figure 5 and 

consist of the applied axial stress (R) and the equivalent 

axial stress (Q) applied at the end of the defect.  Since a 

linear solution is obtained, each loading is investigated 

separately and the total solution is obtained by a superpo- 

sition of results.  The stress components along the fracture 

surface have apparent singularties at the crack tip which 

diminish within three laminate thicknesses to a uniform state 

of stress.  The finite element analysis of various defect 

lengths indicate no dependence of the stress distribution on 

debond length.  Consequently, a single finite element model 

in conjunction with the buckling analysis is sufficient to 

characterize the stress state in the vicinity of the inter- 

laminar crack and represents a major simplification of the 

non-linear problem. 

In Figure 6, the distributions of the axial stress 

component a     for the axial stress tractions R and Q are 

presented.  Note the localized variation of stress which 

diminishes rapidly to a uniform state of stress at y/h = -3. 

An axial stress R of unit magnitude applied to the model 

remains constant (equal to -1), attains a maximum at the 

crack tip and decays to twice the applied stress as re- 

quired by equilibrium. 
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In Figure 7 and 8, the interlaminar shear and 

normal stress distributions are presented.  All profiles 

are symmetric with respect to stress tractions R and Q and 

appear singular at the crack tip.  Consequently, the inter- 

laminar state of stress exists only for sublaminate geom- 

etries having reduced axial stiffness (Q<R) as determined 

in the flexurai analysis.  The interlaminar shear stress 

distribution presented in Figure 7, represents the axial 

load transferred to the sublaminate bonded to the honey- 

comb core and restrained from buckling.  The eccentricity 

in the load path, however, establishes the interlaminar 

normal stress distribution at the crack tip shown in Figure 

8.  Note that the regions of tensile and compressive 

stresses are equal in area as required by equilibrium. 

For Q<R, the interlaminar normal stress distribution gen- 

erates a crack closing moment which will be included in 

the strain-energy release rate formulation for the pre- 

diction of compressive strength of composite laminates with 

interlaminar defects. 
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Figure 7.  Shear Stress Distribution Along Section A-A: 
Axial Loading 
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Crack Tip 

Figure 8.  Interlaminar Normal Stress Distribution Along 
Section A-A:  Axial Loading 



FLEXURAL INSTABILITY OF COLUMNS 

The slight variation of flexure stress across the 

laminate thickness and the sandwich beam curvature are 

neglected.  The debond region is modelled as two beams in 

parallel, one straight and one which exhibits lateral de- 

formations.  Consider a uniform contraction/ A, of the beam 

model shown in Figure 9.  The loads carried by the two 

beams are proportional to their stiffness: 

pt = ps+ pb - <¥* + VA (i) 

where K, is the stiffness of the buckled beam determined from 

the flexural analysis presented below.  Therefore, for a 

specified initial imperfection, one interates on the axial 

displacement until the total axial loads equals the experi- 

mental value at failure.  The loadings in the buckled sub- 

liminate can then be substituted into the stress analysis 

(Figures 6-8) to determine specific distributions for the 

various stress components.  The stress tractions, R and Q, 

are simply the appropriate axial loads divided by the cross- 

sectional area of the sublaminate. 

19 
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Pt 

P, = Ps + Pb 

= (Ks+Kb)A 

where    Ks = —£— 

Kb=Kb(L,W,Pb) 

Figure 9.  Beam Model 
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Consider the axially loaded beam with arbitrary 

initial deformation wQ(y) shown in Figure 10.  The governing 

differential equation in terms of the bending deformation, 

w,(y) measured from the initial shape, is given by 

,2      d2w.    ,   d(w-+w) 

^<vb ^> - k* -w^ - ° 
0 < y < L 

where N = axial forces 

E, = effective laminate modulus 
D 

u = axial displacement 

w1 = lateral bending deformation 

A, = cross sectional area 
b 

I, = moment of inertia b 

The boundary conditions for the clamped-clamped 

beam subjected to an axial displacement, A are: 

w1(0) = 0 w1(L) = 0 (4) 

dw, dw, 
_L(0) = 0 a^(L) = 0 (5) 
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w0(y) 

w(y) 
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Figure 10.  Initially Deformed Beam - Column 
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u(0) = 0 u(L) = -A (6) 

The solution of Equation (3) implies that the axial force 

in the buckled laminate, N is a constant equal to: 

For E, I,, constant, Equation (2) simplifies to the following 
b b 

A O O 

dw,     - d wn     _ d w 
1  ■ A2 _1 = _x2 _o (8) 

where 

dy4      dy2       dy2 

*2 - VVb (9) 

In the following analysis, wQ(y) is assumed to be the first 

eigenvector of the clamped-clamped beam, 

w (y) = ^{1-cos ^} (10) 
O       2 L 

where W is the maximum deflection at the center of the beam. 

Substitution of Equation (10) into Equation (8) yields 
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4 2 
d wn           „   d w, , 2_rT  2 „ 

1 ,    , 2          1 A   2WIT               2TTV                                 /IIV 

—T~            —T~ = 2— cos ~L (  * dy       dy L 

The general solution of equation (11) is 

wl(y) = Cl COS Xy + C2   sin Xy  + C4 + wlp(y) (12) 

where w1 (y) is the particular solution given by 

, 2T7    2iry 
-A W COS -y*- 

Vy) =-T-2 f- <13) 

2(i|--A2) 
L 

Employing the boundary conditions in Equations (4) 

and (5) to determine the unknown constants yields 

Cl = C2 = C3 = ° 

r     =    X
2W 

(14) 

2 (if-- A2) 
IT 

The solution reduces to: 

(AL)2W(l-cos ^H-) 
^- (15) w (y) =  5 2~ 1        2(4TT -(ALp) 
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Performing the integration indicated in Equation (3) yields 

the following expression for the axial displacement, 

V , ^2<^)4 w2 
EA

b   4L(4TT2-(XL)2) 

(16) 

The total bending deformation is     therefore: 

2TT
2

W(1-COS ^-) 

w(y)   = wQ(y)   + wl(y)   =       (4ir2_(XL)*, 
(17) 

In the limit as the axial load tends to zero (X->0) , A tends 

to zero and the total bending deformation approaches the 

prescribed initial deflection wQ(y).  The solutions, however, 

share the common singularity at the Euler buckling load (?CR) 

In Figure 11, the axial load-displacement response 

of an initially deformed beam is presented.  The axial load 

at which significant non-linear response initiates is in- 

versely proportional to the initial deflection, W.  With re- 

spect to the beam model in Figure 9, commencement of non- 

linear behavior corresponds to reduced axial stiffness of 

the buckled sublaminate and the transfer of load at the 

crack tip through interlaminar stresses to the sublaminate 

bonded to the honeycomb core (See Figure 10).   Within 

the constraints of small deflection theory, the maximum 
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0.00 0.02 0,12 

L 

Figure 11.  Axial Load-Displacement Response of an 
Initially Deformed Beam 
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axial load of an initially deformed beam at which point the 

axial stiffness tends to zero decreases with increasing W 

and is significantly less than the Euler buckling load as- 

sumed in the post-buckling analysis of Whitcomb [5] and 

Chai [4].  This phenomenon is clearly illustrated in Figure 

12 where the stress component, Q, in the initially deformed 

sublaminate approaches the asymptote with increasing applied 

stress, R.  Consequently, the stress component, S, in the 

sublaminate restrained from buckling is a monotonically in- 

creasing function of R as required by equilibrium.  In Fig- 

ure 13, the deleterious effects of the initial deflection, W, on 

the axial load-midspan deflection response is presented.  For 

a prescribed axial loading, the bending deformations, as well 

as, the bending moment which initiates the Mode I crack prop- 

agation are directly proportional to the initial deflection 

W.  Therefore, the compressive strength of composite lami- 

nates with interlaminar defects is inversely proportional 

to the magnitude of the initial out-of-plane deformations. 

CORRELATION OF RESULTS 

Correlation of experimental data with analytic 

predictions was based upon a strain-energy release rate 

formulation consistent with the approximations of simple 

beam theory.  Whitcomb [3] and Ashizawa [1] have shown 

that Mode I strain energy release rate, GI , dominates 

instability-related delamination growth.  Consequently, the 
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Figure 12. Influence of Applied Stress on Stress 
Resultants in Beam Model 
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0.0 
0.00    0.02 0.04    0.06     0.08    0.10 

w(L/2)-W 

Figure 13.  Axial Load-Midspan Deflection Response of an 
Initially Deformed Beam 
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Mode II contribution to the total strain-energy release rate 

will not be included in the present analysis. 

The strain-energy release rate for a cantilever beam 

2 loaded by a moment is  M /2E- I, a  [7] where M is the total 

applied moment at the crack tip  and a is the width of the 

test specimen.  As discussed previously, MT represents the 

summation of the crack opening moment, M, , and the crack 

closing moment, M  , 

(M, +M ) 2 
G  =   b  c (18) 
1   2Vba 

The crack opening moment is obtained directly from the 

flexural analysis and successive differentiation of (17) 

yields, 

8TT
4
E, I, W  r    b b  T (29) 

u        -r 2  .2 ., _ . 2 L   4TT -(XL) 

The crack closing moment arises from the reduced axial 

stiffness of the delamination and the eccentricity in the 

load path at the crack tip.  An expression for M can be 

derived from the free body diagram in Figure 14. 

Force summation in the "y" direction yields the 

shear force resultant x, where 
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-3h 

T = a T   dy yz x (R-Q) 
ah (20) 

The shear resultant, however, is not co-linear with the axial 

stress resultants and the moment M is produced at the crack 

tip.  Summing moments yields the desired expression for the 

crack closing moment, 

M  = c 
-a(R-Q)h 

8 
(21) 

The closing moment, however, corresponds to the moment as- 

sociated with the interlaminar normal stress distribution 

presented in Figure 8.  Numerical integration yields, 

-3h 

M  = a 
c °z   YäY 

-a(R-Q)h 
9.4 (22) 

0 

Further mesh refinement would reduce the discrepancy between 

equations (21) and (22) by providing improved approximation 

to the large stress gradients which exist in the vicinity 

of the crack tip.  Additional finite element analysis is 

not.required however since equation (21) is exact.  The in- 

fluence of applied loading on the moment resultant  is pre- 

sented in Figure 15 for a delamination length of 1.5 inches 

(38.1mm).  Moments tL and M  are monotonically increasing 
J3        C 
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Figure 15.  Influence of Applied Stress on Opening and 
Closing Moments 
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and decreasing functions of the applied load, respectively. 

The total moment, however, attains a global maximum through 

the interaction of the opening and closing moments of 

opposite sign.  Employing equation (18),strain-energy release 

rate is presented as a function of the applied loading and 

several values of initial imperfections, W.  The strain- 

energy release rate also exhibits maxima whose magnitude 

are directly proportional to the initial deflection, W. 

Interestingly, results presented in Figure 16 reveal the 

existence of stable configurations for which the available 

strain energy for delamination growth does not exceed the 

critical value (GIC).  In Figure 17, the non-dimensionalized 

strain-energy release rate (G/GIC) as a function of applied 

load for the specific delamination length/initial deflection 

geometries encountered in the experiment effort is presented. 

Fast interlaminar fracture occurs when the strain-energy 

release rate equals the critical value as illustrated in 

Figure 17.  A value of GIC = 1.4 lb/in (250N/m) provides 

excellent correlation of experimental data with analytical 

predictions of the compressive strength of composite lami- 

nate with interlaminar defects (Figure 18). 
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Figure 16.  Strain Energy Release Rate as a Function of 
Initial Deflection (W) 
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CONCLUSIONS 

The local instability of sublaminates due to 

interlaminar defects results in the drastic reduction in 

compressive strength of the laminate investigated.  The 

presence of initial deformations results in reduced axial 

stiffness of the sublaminate for axial failure loads sig- 

nificantly less than the classical Euler's buckling load. 

Consequently, post-buckling analyses may not be applicable 

for delaminations with initial deflections.  Linear finite 

element stress analysis of the crack tip region is employed 

by replacing the non-linearity of the initially deformed 

sublaminate with an equivalent set of loads determined from 

the beam model.  The interlaminar state of stress dimin- 

ishes within three laminate thicknesses from the crack tip 

and is independent of delamination length.  Therefore, a 

single finite element model in conjunction with the flexural 

analysis is sufficient to characterize the stress state in 

the vicinity of the crack tip.  The interlaminar normal 

stress distribution at the crack tip corresponds to a crack 

closing moment which significantly influences strength 

predictions.  The analytical approach for the prediction of 

compressive strength consists of the strain-energy release 
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rate for a cantilever beam loaded by a moment where the 

total moment has contribution from both the opening 

and closing moments.  A value of G  = 1.4 lb/in 

(250N/m) provides excellent correlation of experimental 

data with analytic predictions of the compressive strength 

for the delamination geometries investigated. 



REFERENCES 

Ashizawa, M., "Fast Interlaminar Fracture of a 
Compressively Loaded Composite Containing a Defect," 
Fifth DoD/NASA Conference on Fibrous Composites in 
Structural Design, 1981. 

Gillespie, J. W. and Pipes, R. B., "Compression 
Strength of Composite Materials with Interlaminar 
Defects," Center for Composite Materials Report 
CCM79-17, 1979. 

Whitcomb, J. D., "Finite Element Analysis of Instability 
Related Delamination Growth," Journal of Composite 
Materials, Vol. 14, 1931, p. 403. 

Chai, Hazl, "The Growth of Impact Damage in Compres- 
sively Loaded Laminates, " Ph.D. Dissertation, 
California Institute of Technology, 1982. 

Whitcomb, J. D., "Approximate Analysis of Postbuckled 
Through-Width Delaminations," NASA Technical Memorandum 
83147, 1981. 

Pipes, R. B. and Pagano, W. J., "Interlaminar Stresses 
in Composite Laminates - An Approximate Elasticity 
Solution," Journal of Applied Mechanics, Vol. 41, 1974, 
p. 668. 

Lawn, B. R. and Wilshaw, T. R., Fracture of Brittle 
Solids, Cambridge University Press, Cambridge, 1975, 
p. 62. 

40 


